

Biogas to Liquid Fuels and Chemicals Using a Methanotrophic Microorganism WBS 2.3.2.102

2015 DOE BioEnergy Technologies Office (BETO)
Project Peer Review
March 24, 2015

Technology Area: Biochemical Conversion
Principal Investigator: Michael T. Guarnieri
Organization: National Renewable Energy Laboratory

Goal Statement

Background

- Methane-rich biogas offers a <u>renewable alternative to natural gas</u> as a feedstock and intermediate in bioprocesses
- Relevant to EERE's MYPP for developing cost-effective, integrated waste-toenergy processes for the production of bioproducts and advanced biofuels.

Goals

- 1. Demonstrate proof of concept for a biogas-to-liquid fuels and chemicals process.
- 2. Enhance carbon conversion efficiency from methane to biomass and products.

Outcome: Alternative, renewable path to hydrocarbon fuels and chemicals.

- Enables the sustainable, nationwide production of biofuels that are compatible with transportation infrastructure.
- Displaces a share of petroleum-derived fuels to reduce U.S. dependence on oil.
- Encourages the creation of a new domestic bioenergy industry.

Quad Chart Overview

Timeline

Project start date: March, 2014

Project end date: September, 2015

• Percent complete: 66%

Budget

	Total Costs FY 10 -FY 12		FY 14 Costs	Total Planned Funding (FY 15- Project End Date
DOE Funded	-	-	\$137, 586	\$262,414

Barriers

- Bt-J: Catalyst Development
- Bt-K: Biochemical Conversion Process Integration
- Bt-L: Biochemical/ Thermochemical Interface

Partners & Synergistic Activity

- University of Washington: subcontract to aid in metabolic flux balance analyses.
- ARPA-E: NREL, Lanzatech, Johnson Matthey, UW
- Waste-to-Energy TEA: NREL, ANL
- **BCU FOA:** NCSU, UW, Farmatic, Inc., Metabolon, Inc.

Project Overview

- History: This seed project represents the first biogas upgrading project at NREL. A related ARPA-E project exploring biological upgrading of natural gas was initiated in FY13.
- Context: "There is a significant near-term market entry opportunity to deploy waste-to-energy technologies in the U.S."
 - MSW, Landfill gas, Agriculture and WWTP waste streams represent poorly valorized domestic feedstocks
 - Biogas expands the suite of products from biorefineries, municipalities, and agricultural operations: potential to increase revenue & reduce GHG emissions.
 - Enables biological gas-to-liquids conversion and upgrading for integration with existing transportation infrastructure
 - Enables a national network of distributed power and biofuel production sites
- Objective: Develop a viable path for biocatalysis of biogas-derived methane to fuels and chemicals.

^{*}Male, J. Waste to Energy (2014) http://energy.gov/sites/prod/files/2014/11/f19/male_waste_to_energy_2014.pdf

Technical Approach

Development of Genetic Tools & Metabolic Engineering Strategy

Gas Fermentation Optimization

Techno-economic Analysis

- Approach: Employ pathway analyses, fermentation engineering, and techno-economic analyses to inform hypothesis-driven strain-engineering strategies.
- Major challenges and success factors: (i) development of methanotroph genetic tools, (ii) gas mass transfer (fermentation optimization), (iii) carbon conversion efficiency enhancements, and (iv) productivity enhancements (biomass and products)

Management Approach

- Staffing includes molecular and microbiologists, fermentation and chemical engineers, and analytical chemists
- Research guided by TEA, with related quarterly, metrified milestones
- Monthly group meetings, regular interaction with technical staff

 Synergistic interaction between Biogas seed project, ARPA-E natural gas upgrading project, and Univ. of Washington (subcontract: flux balance analysis)

Results: Development of Genetic Tools

- Unexplored genus at NREL, requiring genetic toolbox development
- Developed both replicative and integrative plasmids for constitutive and inducible gene expression and knockout in a methanotroph.
- Constitutive, strong promoters have been isolated and successfully employed for overexpression of target genes.
- Inducible operators have been identified for temporal regulation of gene expression.

Results: Development of Genetic Engineering Strategy

 In-silico analyses and literature review defined initial targets for strainengineering, as reported in FY14, Q1 Milestone report.

Results: Fermentation Optimization and Lipid Accumulation

- Genetically engineered a methanotrophic bacterium to produce lactic acid and lipids from C1 substrates (methane and methanol).
 - Proof-of-concept for a methane-to-lactate and lipids bioprocess

Lipid extraction and upgrading successfully developed via ARPA-E

Fatty Acid Speciation

									-
1 '		, '	1	1			1		Total
Sample	Biomass, g/L	C14:0	C15:0	C16:0	C16:1n9	C16:1n7	C16:1n6	C16:1n5	FAME
@96h	12.4	6.98	1.12	12.46	26.22	24.26	23.43	4.93	10.7%

Results: Metabolic Engineering for Fuel & Chemical Biosynthesis

- Genetically engineered a methanotrophic bacterium to produce lipids and lactate from C1 substrates (methane and methanol).
 - Proof-of-concept for a methane-to-fuels and chemical bioprocess

- (A) Pathway targets for strain-engineering (B) Colorimetric detection of lactate in culture broth of wild-type (left) and lactate dehydrogenase-overexpressing strain (right). (C) HPLC quantitation of inducible lactate biosynthesis in wild-type (left) and lactate dehydrogenase-overexpressing methanotroph (right).
- Lipid content unaltered by lactic acid production

Results: In vitro and in vivo LDH Analyses

- An array of LDH and promoter-LDH combinations were examined to define optimal pairings for methanotrophic lactate production.
- Enhanced LA production nearly two orders of magnitude over wild-type background
 - Exceeded Y1 Go/No-Go Milestone
- Subject of ROI # 15-21:
 Methane biocatalysis for production of lactic acid.

Results: Techno-economic Analysis

- TEA for an integrated bioprocess identified a viable biogas-to-fuels and chemicals production route
- Capital cost (CAPEX) and operation (OPEX) cost examined using key parameters and process assumptions, including
 - plant capacity
 - yields of core technologies
 - raw material and chemical costs
- Preliminary analyses indicate carbon conversion efficiency and gas feed costs will be primary cost drivers in the development of viable biogas-to-fuels and

TEA for ARPA-E encouraging for natural gas upgrading process exclusively targeting fuels: use of biogas and coproduct credit will contribute greatly to favorable TEA and commercial success.

2014 Biochemical Upgrading FOA

 Proof-of-concept data from seed project contributed to successful application selected under the BETO Biochemical Upgrading FOA (DE-FOA-0001085), targeting biocatalysis of methane to high-value co-products and novel bioreactor design.

Relevance

- Relevant to EERE's MYPP for developing cost-effective, integrated waste-to-energy processes for the production of bioproducts and advanced biofuels.
- Specifically targets identified MYPP barriers, including: Catalyst Development, Biochemical Conversion Process Integration, and Biochemical/ Thermochemical Interface.
- Genetic tools, biocatalysts, and TEA directly advance emerging biogas and bioenergy industry.
- Represents proof-of-concept for an array of methane biocatalysis strategies, opening the door for feedstock expansion in an emerging bioeconomy and creation of a new domestic bioenergy industry.
- Tech transfer/marketability: A number of commercial entities (including partners Lanzatech and Farmatic) are currently exploring biogas generation and methane upgrading technologies.

Future Work

Enhance flux from methane towards biomass and bioproducts

- Identification of flux bottlenecks via metabolomic and transcriptomic analyses
- Strain-engineering enhancements targeting overexpression of methane oxidation genes
- Strain-engineering enhancements targeting knockout of competitive fermentative pathways
- FY15 Key Milestone: >10% CCE Enhancement

Summary

- An array of biogas feedstocks with high-volume methane potential offer a versatile, renewable alternative to natural gas.
- Methanotrophic biocatalysis offers a promising path towards valorization of biogas derived from anaerobic digestion of waste streams.
- Metabolic routes and strain-engineering strategies targeting enhanced biosynthesis of fuels and high-value chemicals have been established in a methanotrophic bacterium.
 - Represents first demonstration of biological CH₄-to-fuels and chemicals
- Preliminary TEA has identified a viable commercial path
 - Sensitivity analyses indicate carbon conversion efficiency and gas feed costs will be primary cost drivers in the development of viable biogas-to-fuels and chemicals processes.
- Enhanced genetic tool development and fermentation optimization will be pursued in FY15, targeting improvements in carbon conversion efficiency from methane to biomass and products.

Acknowledgements

NREL

Philip Pienkos
Nancy Dowe
Calvin Henard
Holly Smith
Qiang Fei
Ling Tao
Kelsey Ramirez

University of Washington

Marina Kalyuzhnaya Mary Lidstrom

Additional Slides

Publications, Patents, Presentations, Awards, and Commercialization

- Presented work at 2014 SIMB Annual Meeting: "Biogas to Liquid Fuels and Chemicals Using a Methanotrophic Microorganism."
- Manuscripts in Preparation related to biogas biocatalysis to fuels and chemicals and TEA related to the conceptual integrated bioprocess.
- ROI: "Methane biocatalysis to lactic acid."